
undo-doc Documentation
Release 0.5.1

David Townshend

April 12, 2012

Contents

1 Installation 3

2 Basic Usage 5
2.1 Return values and exceptions . 5
2.2 Nested actions . 6
2.3 Clearing the stack . 6
2.4 Groups . 7

3 Advanced Usage 9

4 Members 11

Python Module Index 15

i

ii

undo-doc Documentation, Release 0.5.1

This is an undo/redo framework based on a functional approach which uses a undoable stack to track actions.
Actions are the result of a function call and know how to undo and redo themselves, assuming that any objects
they act on will always be in the same state before and after the action occurs respectively. The Stack tracks all
actions which can be done or undone.

Contents 1

undo-doc Documentation, Release 0.5.1

2 Contents

CHAPTER 1

Installation

undo can be installed using pip: pip install undo, or downloaded from http://bitbucket.org/aquavitae/undo
and installed using python setup.py install. It has been tested with Python 2.7 and Python 3.2, and has
no extra dependencies.

3

http://bitbucket.org/aquavitae/undo

undo-doc Documentation, Release 0.5.1

4 Chapter 1. Installation

CHAPTER 2

Bug Reporting

Bug reports and feature requests can be made on the issue tracker.

5

http://bitbucket.org/aquavitae/undo/issues

undo-doc Documentation, Release 0.5.1

6 Chapter 2. Bug Reporting

CHAPTER 3

Basic Usage

The easiest way to use this framework is by defining actions using the undoable decorator on a generator object.
This is a very similar syntax to that used by Pythons’s contextlib.contextmanager. For example,

>>> @undoable
... def add(sequence, item):
... # Do the action
... sequence.append(item)
... position = len(sequence) - 1
... # Yield a string describing the action
... yield "Add ’{}’ at psn ’{}’".format(item, position)
... # Undo the action
... del sequence[position]

This defines a new action, add, which appends an item to a sequence. The resulting object is an factory which
creates a new action instance and adds it to the stack.

>>> s = [1, 2, 3]
>>> add(s, 4)
>>> s
[1, 2, 3, 4]
>>> stack().undotext()
"Undo Add ’4’ at psn ’3’"
>>> stack().undo()
>>> s
[1, 2, 3]

3.1 Return values and exceptions

The first call to the action may have a return value by adding it to the yield statement. However, it will be ignored
in subsequent redos or undos.

>>> @undoable
... def process(obj):
... obj[0] += 1
... yield ’Process’, obj
... obj[0] -=1
...
>>> obj = [1, 2]
>>> process(obj)
[2, 2]
>>> print(obj)
[2, 2]

7

http://docs.python.org/3.2/library/contextlib.html#contextlib.contextmanager

undo-doc Documentation, Release 0.5.1

>>> stack().undo()
>>> print(obj)
[1, 2]

If an exception is raised during the action, it is not added to the stack and the exception is propagated. If an
exception is raised during a redo or undo operation, the exception is propagated and the stack is cleared.

3.2 Nested actions

It is safe for actions to call each other. Only the top-most action is added to the stack.

>>> @undoable
... def add(seq, item):
... seq.append(item)
... yield ’Add’
... pop(seq)
...
>>> @undoable
... def pop(seq):
... value = seq.pop()
... yield ’Pop’
... add(seq, value)
...
>>> seq = [3, 6]
>>> add(seq, 4)
>>> seq
[3, 6, 4]
>>> stack().undo()
>>> seq
[3, 6]
>>> pop(seq)
>>> seq
[3]
>>> stack().undo()
>>> seq
[3, 6]

3.3 Clearing the stack

The stack may be cleared if, for example, the document is saved.

>>> stack().canundo()
True
>>> stack().clear()
>>> stack().canundo()
False

It is also possible to record a savepoint to check if there have been any changes.

>>> add(seq, 5)
>>> stack().haschanged()
True
>>> stack().savepoint()
>>> stack().haschanged()
False
>>> stack().undo()
>>> stack().haschanged()
True

8 Chapter 3. Basic Usage

undo-doc Documentation, Release 0.5.1

3.4 Groups

A series of actions may be grouped into a single action using the group context manager.

>>> seq = []
>>> with group(’Add many’):
... for item in [4, 6, 8]:
... add(seq, item)
>>> seq
[4, 6, 8]
>>> stack().undocount()
1
>>> stack().undo()
>>> seq
[]

3.4. Groups 9

undo-doc Documentation, Release 0.5.1

10 Chapter 3. Basic Usage

CHAPTER 4

Advanced Usage

Actions can be created in a variety of ways. All that is required is that an action which has occurred has do, undo
and text methods, none of which accept any arguments. The action must also be added to the stack manually using
Stack.append. The simplest way of creating custom actions is to create a class which provides these methods
and adds itself to the stack when created.

11

undo-doc Documentation, Release 0.5.1

12 Chapter 4. Advanced Usage

CHAPTER 5

Members

undo.undoable()
Decorator which creates a new undoable action type.

This decorator should be used on a generator of the following format:

@undoable
def operation(*args):

do_operation_code
yield ’descriptive text’
undo_operation_code

undo.group()
Return a context manager for grouping undoable actions. All actions which occur within the group will be
undone by a single call of Stack.undo, e.g.

>>> @undoable
... def operation(n):
... yield
... print(n)
>>> with group(’text’):
... for n in range(3):
... operation(n)
>>> operation(3)
>>> stack().undo()
3
>>> stack().undo()
2
1
0

undo.stack()
Returns the currently set Stack instance. If no stack has been set then a new instance is created and set.

undo.setstack(stack)
Set the Stack instance to use as the undo stack.

class undo.Stack
An undo stack. stack can usually be called instead of creating an instance iof this diectly.

The two key features are the redo and undo methods. If an exception occurs during doing or undoing a
undoable, the undoable aborts and the stack is cleared to avoid any further data corruption.

The stack provides two properties for tracking actions: docallback and undocallback. Each of these allow
a callback function to be set which is called when an action is done or undone repectively. By default, they
do nothing.

13

undo-doc Documentation, Release 0.5.1

>>> def done():
... print(’Can now undo: {}’.format(stack().undotext()))
>>> def undone():
... print(’Can now redo: {}’.format(stack().redotext()))
>>> stack().docallback = done
>>> stack().undocallback = undone
>>> @undoable
... def action():
... yield ’An action’
>>> action()
Can now undo: Undo An action
>>> stack().undo()
Can now redo: Redo An action
>>> stack().redo()
Can now undo: Undo An action

Setting them back to lambda: None will stop any further actions.

>>> stack().docallback = stack().undocallback = lambda: None
>>> action()
>>> stack().undo()

It is possible to mark a point in the undo history when the document handled is saved. This allows the
undo system to report whether a document has changed. The point is marked using savepoint() and
haschanged() returns whether or not the state has changed (either by doing or undoing an action). Only
one savepoint can be tracked, marking a new one removes the old one.

>>> stack().savepoint()
>>> stack().haschanged()
False
>>> action()
>>> stack().haschanged()
True

canundo()
Return True if undos are available.

canredo()
Return True if redos are available.

redo()
Redo the last undone action. This is only possible if no other actions have occurred since the last undo
call.

undo()
Undo the last action.

clear()
Clear the undo list.

undocount()
Return the number of undos available.

redocount()
Return the number of redos available.

undotext()
Return a description of the next available undo.

setreceiver([receiver=None])
Set an object to receiver commands pushed onto the stack.

By default the receiver is an internally managed stack, but it can be set to any object with an append()
method. This is used mainly for grouping actions.

14 Chapter 5. Members

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True

undo-doc Documentation, Release 0.5.1

resetreceiver()
Reset the receiver to the internal stack.

append(action)
Add an undoable action to the stack, using receiver.append().

savepoint()
Set the current point in the undo/redo history as the savepoint. This makes it possible to check whether
changes have been made.

haschanged()
Return True if the state has changed since the savepoint. This will always return True if the save-
point has not been set.

15

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True

undo-doc Documentation, Release 0.5.1

16 Chapter 5. Members

Python Module Index

u
undo, 1

17

	Installation
	Basic Usage
	Return values and exceptions
	Nested actions
	Clearing the stack
	Groups

	Advanced Usage
	Members
	Python Module Index

